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The energy dissipation characteristics of Active Constrained Layer Damping (ACLD)
treatments of plates is optimized using rational design procedures. Such treatments of plates
is optimized using rational design procedures. Such treatments consist of viscoelastic cores
constrained by active piezo-electric layers. The optimal size and control gains of these
ACLD treatments are determined using a globally stable boundary control strategy to
control the strains of the active peizo-electric layers in response to the structural vibrations.
The optimal parameters are obtained to maximize the sum of the passive and active loss
coefficients of the ACLD treatments. The effect of the viscoelastic loss factor as well as the
aspect ratio and piezo-electrical anisotropy of the constraining layer on the performance
and the optimal parameters of the ACLD treatments is determined. Comparisons with
optimal Passive Constrained Layer Damping (PCLD) indicate that the optimal ACLD is
more effective in dissipating vibrational energy.
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1. INTRODUCTION

Considerable interest has been devoted to the development, modeling and testing of ACLD
treatments of flexible structures because of their effectiveness of damping out structural
vibrations [1–16]. In this class of damping treatments, viscoelastic damping layers are
constrained by active piezo-electric layers whose longitudinal strains are controlled in
response to the structural vibrations in order to enhance the energy dissipation
characteristics. Recently, attempts have been made to optimize the performance of the
ACLD treatments by selecting the optimal thickness and shear modulus of the viscoelastic
cores as well as the control gains for fully-treated beams when proportional and derivative
controllers are used [13, 17]. Baz [5] developed the optimal length and control gains for
ACLD treatments of beam-type structures by maximizing the sum of the passive and active
loss coefficients. His analysis was an extension of the pioneering work of Plunkett and Lee
[18] for determining the optimal length of PCLD treatments of beams.

In the present study, the emphasis is placed on extending the work of Baz [5] to
determine the optimal size and control gains of plate-type ACLD treatments using globally
stable boundary controllers.

This paper is organized in seven sections. In section 1 a brief introduction is given. The
concept of the active constrained layer damping is presented in section 2. The theories
governing the operation of the ACLD and the globally stable boundary controller are
described in sections 3 and 4. The energy dissipation of the ACLD is quantified in section
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5 and optimized in section 6. In section 6, numerical examples are also presented to
compare the performance of the optimal ACLD treatment with those of conventional
PCLD. Section 7 gives a brief summary of the conclusions.

2. THE CONCEPT OF THE ACTIVE CONSTRAINED LAYER DAMPING

The ACLD treatment consists of a viscoelastic constrained layer and a piezo-electric
layer, acting as active constraining layer and is augmented with efficient active control
means to control the strain of the constraining layer, in response to the structural
vibrations. The two-layer composite ACLD when bonded to the base structure acts as a
smart constrained layer damping treatment with built-in control capabilities. In practice
the constrained layer damping treatment is periodically cut into several segments in order
to optimize the effectiveness of the damping treatment on a large structure [18, 19]. Such
a typical segment of ACLD treatment on a plate is shown in Figures 1 and 2. When the
base structure experiences the longitudinal displacements, u0 and v0 at the interface between
it and the viscoelastic core in the x and y directions, respectively, the in-active constraining
layer undergoes the corresponding displacements upa and vpa at the interface between it and
viscoelastic core. Consequently, the viscoelastic layer is subjected to a passive shear stain,
gpa , in the x-z plane as shown in Figure 2(b). Under these conditions, the ACLD acts as
a conventional PCLD. But, when the constraining layer is activated properly by the
controller, the passive displacements upa and vpa change to u and v, respectively. Thus an
additional displacement (u− up) is generated by the piezo-electric effect to increase the
shear strain of the viscoelastic core to g1 as shown in Figure 2(c) in the x-z plane. The
corresponding increase in the shear strain (g1 − gpa ) enhances the energy dissipation
characteristics of the ACLD and results in effective damping of the structural vibrations.
Similarly, the activated piezo-layer also undergoes an additional deflection (v− vpa ) in the
y direction resulting in increasing the shear strain of the viscoelastic core in the y-z plane
to g2.

3. VARIATIONAL MODELLING OF ACTIVE CONSTRAINED LAYER DAMPING
TREATMENT OF PLATES

3.1. 

A distributed parameter model is developed using Hamilton’s principle to describe the
behavior of ACLD treatments of plates. The model is an extension to the beam model

Figure 1. Schematic diagram of the active constrained layer damping
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Figure 2. Operating principles of the PCLD and the ACLD treatments: (a) undeformed, (b) PCLD, (c) ACLD.

of PCLD developed by Plunkett and Lee [18] and of ACLD developed by Baz [5]. The
variational model is utilized as a basis for devising a globally stable boundary control
strategy which is compatible with the operating nature of the ACLD treatments. In this
manner, the instability problems associated with the simple proportional and/or derivative
controllers are completely avoided. Furthermore, as the control strategy is based on
distributed parameter model, the classical spillover problems resulting from using
‘‘truncated’’ finite element models are eliminated. Accordingly, the devised boundary
controller will be able to control all the modes of vibration of the ACLD treated structures.

Figure 3. Schematic freebody diagram of the ACLD treatment: (a) piezo constraining layer, (b) visco-elastic
layer.
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3.2.     

Figure 3 shows a schematic free body diagram of the ACLD treatment. It is assumed
that the thicknesses of the piezo-constraining and viscoelastic layers are very small
compared to that of the base structure. Hence, the bending effects are negligible, the
constraining layer is subjected to in-plane strains only and the viscoelastic core is subjected
to shear only. The piezo-electric constraining layer is assumed to be elastic and dissipate
no energy whereas the core is assumed to be linearly viscoelastic. It is also assumed that
the longitudinal stresses in the viscoelastic core are negligible. Furthermore, the shear stress
in the viscoelastic layer and the stresses in the constraining layer are assumed to be uniform
through their thickness. In addition, the base strucure is subjected to longitudinal strains
o0x and o0y in the x and y directions, respectively, which are assumed to be spatially uniform
over the interface of the base structure and viscoelastic layer and temporally varying in
a sinusiodal manner at a frequency, v, due to cyclic vibration of the base structure. It may
be noted that the above assumptions are consistent with those made by Plunkett and Lee
[18] and Baz [5].

3.3.  

From the geometry of Figure 2 along with the concept of active constrained layer
damping, the shear strains, g1 and g2 in the viscoelastic core due to the effects of
piezo-constraining layer and the deformations of the base structure in the x and y
directions, respectively, can be expressed as

g1 = (u− u0)/h1, g2 = (v− v0)/h1, (1)

in which h1 denotes the thickness of the viscoelastic layer.

3.4.     

3.4.1. Potential Energies
The potential energies, U1 and U2 associated with the plane stress deformations of the

piezo-electric constraining layer and the shearing of the viscoelastic layer of the ACLD
system, respectively, are

U1 = 1
2 h2 g

b/2

−b/2 g
a/2

−a/2

[C11 u2
x +2C12 ux vy +C22 v2

y +C66 (uy + vx )2 dx dy, (2)

and

U2 = 1
2 G'h1 g

b/2

−b/2 g
a/2

−a/2

(g2
1 + g2

2 ) dx dy, (3)

where C11, C22, C12, and C66 are the elastic constants of the piezo-layer, h2 ; a and b are
its thickness, length and width, respectively. The subscripts x and y denote partial
differentiation with respect to x and y, respectively. Also, h1 is the thickness of the
viscoelastic layer. In equation (3), it is assumed that the behaviour of the viscoelastic layer
is linear and described in terms of the complex modulus G*=G'(1+ hg i) with G', hg and
i denoting the storage shear modulus, loss factor and z−1, respectively.
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3.4.2. Kinetic Energy
The kinetic energy T associated with the longitudinal displacements u and v is given by

T= 1
2 mb g

b/2

−b/2 g
a/2

−a/2

(u2
t + v2

t ) dx dy, (4)

where m is the mass per unit area of the piezo-electric constraining layer and the subscript
t denotes differentiation with respect to time. In equation (4), the rotary inertia of the
viscoelastic layer is neglected and also the inertia of the base structure is not considered.

3.5.      

The work done, W1, by the piezo-electric control forces is given by

W1 =g
b/2

−b/2 g
a/2

−a/2

−h2 {(C11 opx +C12 opy )ux +(C12 opx +C22 opy )vy} dx dy, (5)

where epx and epy are the strains induced in the piezo-electric constraining layer due to the
applied control voltage in response to longitudinal displacements in the x and y directions,
respectively. In this study, these strains are assumed to be spatially constant at any instant
in order to maintain and emphasize the simplicity and practicality of the ACLD treatment.

Note that due to the particular nature of the piezo-film which allows it only to induce
in-plane longitudinal strains, the inplane shear strain opxy is not considered in equation (5).

The work W2 dissipated in the viscoelastic core is given by

W2 =−h1 g
b/2

−b/2 g
a/2

−a/2

(tdx g1 + tdy g2) dx dy, (6)

where tdx and tdy are the dissipative shear stresses developed in the viscoelastic core. These
are given by

[tdx tdy ]= (G'hg /v) [glt g2t ]= (G'hg i) [g1 g2]. (7)

In equation (7), the behaviour of the viscoelastic core is modelled using the common
complex modulus approach which is a frequency domain-based method [20]. Adoption of
this approach results in a variational model of the ACLD which can be easily reduced to
the classical models of Plunkett and Lee [18] when the piezo-electric strain, opx , is set equal
to zero. However, other viscoelastic models such as the Golla–Hughes–McTavish (GHM)
method are being considered as viable means for describing the transient behavior of the
ACLD [21].

3.6.  

The equations and boundary conditions governing the operation of the ACLD system
are obtained by applying Hamilton’s principle [22],

g
t2

t1

d0T− s
2

i=1

Ui 1 dt+g
t2

t1

d0 s
2

j=1

Wj 1 dt=0, (8)

where d(·) denotes the first variation in the quantity inside the parentheses. Also, t denotes
time with t1 and t2 defining the integration time limits. Using equations (1)–(7) in equation
(8), the following equations of the ACLD system are obtained:
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mh1 /G*utt =B*2
x uxx +B*2

xy vxy +B*2
z uyy −(u− u0), (9)

mh1 /G*vtt =B*2
z vxx +B*2

xy uxy +B*2
y vyy −(v− v0), (10)

along with the boundary conditions

ux = opx , at x=2a/2; vy = opy at y=2b/2; (11a)

uy + vx =0 at x=2a/2, y=2b/2, (11b)

where

B*x =zh1 h2 C11 /G*, B*y =zh1 h2 C22 /G*, B*z =zh1 h2 C66 /G*

B*xy =zh1 h2 (C12 +C66)/G*.

It is important here to note that the second order partial differential equation describing
the ACLD system dynamics in the x direction (equation (9)) is the same as that describing
conventional PCLD as obtained by Plunkett and Lee [18] if the inertia of the constraining
layer is set to zero. However, the boundary conditions given by equation (11) are in a
modified form to account for the control actions generated by the strains, opx and opy ,
induced by the active constraining layer at the free ends of the constraining layer (i.e., at
x=2a/2 and y=2b/2).

Therefore, the particular nature of operation of the ACLD system implies that existence
of boundary control actions opx and opy . In section 4, a boundary control strategy is devised
to capitalize on this inherent operating nature of the ACLD system in such a manner that
ensures global stability of all the vibration modes of the system.

4. BOUNDARY CONTROL STRATEGY

4.1. 

Distributed parameter control theory [23] is used to devise a boundary control strategy
that generates the boundary control actions, opx and opy , in order to ensure global stability
of all the vibration modes of the ACLD system. The control strategy is devised to ensure
that the total energy of the ACLD system is a strictly non-increasing function of time. In
this regard, the approach adopted here is similar to that reported by Baz [5, 7, 8] and Shen
[24].

4.2.  

The total energy, En of the ACLD system is obtained using equations (1) through (7)
as follows:

En =U1 +U2 +T

or

En = 1
2 g

b/2

−b/2 g
a/2

−a/2

[h2 {C11 u2
x +2C12 ux vy +C22 v2

y +(C12 +C66) (uy + vx )2}

+G'h1 (g2
1 + g2

2 )+m(u2
t + v2

t )] dx dy. (12)

Equation (12) gives the energy norm of the ACLD system. This norm is equal to zero if
and only if (u, ut ) and (v, vt ) are zeros at all points along the length and breadth of the
constraining layer. This condition is ensured only when the ACLD system reverts back
to its original undeflected equilibrium position.
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Differentiating equation (12) with respect to time, integrating by parts and using
equations (9) and (10) the following equation is obtained:

E� n =g
b/2

−b/2

h2 (C11 opx +C12 opy ){ut (a/2)−ut (−a/2)} dy

+g
a/2

−a/2

h2 (C12 opx +C22 opy ){vt (b/2)−vt (−b/2)} dx

−(G'hg h1 /v) g
a/2

−a/2 g
b/2

−b/2

(g2
1 + g2

2 ) dx dy (13)

In the above equation the first and third terms define the energy dissipation rate due
to the active control actions (opx and opy ) whereas the second term defines the corresponding
contribution due to the passive damping generated by the viscoelastic core. Note that the
second term is strictly negative indicating that the passive damping provides inherently a
stabilizing effect to the plate system. As for the sum of the first and third terms, it can
be rendered to be strictly negative to stabilize the active control actions if the control
strains opx and opy are selected properly. We have to note, in this regard, the particular
operating nature of the piezo-constraining layer which makes any control voltage applied
across the layer thickness, i.e., in the z direction, generate in-plane strains in both the x
and y directions. Thus, the control action is coupled in nature and the piezo-strains, opx

and opy , are not independent but are related by

opy =(d32/d31)opx , (14)

where d31 and d32 are the piezo-strain contants which quantify the strains in the x and y
directions (1 and 2) due to the applied electric field in the z direction (3). Hence, in order
to guarantee that the energy norm will be continuously decreasing, the control action, opx

should take the form

opx = −$Kx g
b/2

−b/2

{ut (a/2)− ut (−a/2)} dy+Ky g
a/2

−a/2

{vt (b/2)− vt (−b/2)} dx%, (15)

provided that

Ky /Kx =(C12 + (d32 /d31)C22)/(C11 + (d32 /d31)C12), (16)

where, Kx and Ky are the control gains of the boundary controller.
Equations (14) and (15) indicate that the control actions are the integral effect of

feedback of differential velocities at the boundaries of the piezo-electric constraining layer.
It is also important here to note that when the active control actions opx and opy cease or
fail to operate for one reason or another (i.e., when opx =0 and opy =0), the plate system
remains globally stable as indicated by equation (13). Such inherent stability is attributed
to the second term of the equation which quantifies the contribution of the PCLD. Hence,
equation (13) provides quantitative means for weighing the individual contributions of the
ACLD and the PCLD to the total rate of energy dissipation of the base structure.
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4.3.     

The globally stable boundary controller can be easily implemented by solving the partial
differential equations (9) and (10) subject to the boundary conditions given by equations
(11a) and (11b). Since the actuating strains (opx and opy ) at any instant are constants along
the boundaries (equation (11a)), the displacement functions u and v cannot satisfy
equations (11a) and (11b) unless u is function x and v is function of y only. Thus the
analysis is a particular case of axisymmetric vibration in a plane. Hence using the approach
adopted by Plunkett and Lee [18] for the case of PCLD treatments where the effect of the
inertia of the constraining layer is neglected, it can be shown that the following closed form
solutions satisfy both equations (9) and (10) as well as the boundary conditions given by
equations (11a) and (11b):

u− u0 = (opx − o0x ) B*x sinh (x/B*x )/ cosh (a/2B*x ) (17)

and

v− v0 = (opy − o0y ) B*y sinh (y/B*y )/ cosh (b/2B*y ) (18)

Note that when epx =0, equation (17) reduces to Plunkett and Lee’s result. Substitution
of equations (17) and (18) into equation (15) leads to

epx = e0x .
2Kx vBx b[tanh (A)−A+(a/b) (o0y /o0x ) (Ky /Kx ) (B*y /B*x ){tanh (B)−B}]

1+2Kx vBx b{tanh (A)+ (a/b) (Ky /Kx ) (B*y /B*x ) (d32 /d31) tanh (B)} ,

(19)

wherein A= a/2B*x and B= b/2B*y .
Implementation of the control strategy requires that the piezo-actuator must be designed

as an actuator with self-sensing capabilities in the x and y directions using the approaches
suggested by Dosch, et al. [25]. It is important also to note that the temporal derivatives
of u and v can be determined by monitoring the current of the piezo-sensor rather than
its voltage as described, for example, by Miller and Hubbard [26].

5. ENERGY DISSIPATION CHARACTERISTICS OF THE ACLD AND PCLD
TREATMENTS

5.1.     

The energy dissipation characteristics of the ACLD is quantified by using equation (13)
to calculate the energies, DWpa and DWa , which are dissipated per vibration cycle by the
passive and active components of the ACLD treatment, respectively, as follows:

DWpa =(G'hg h1 /v) g
2p/v

0 g
b/2

−b/2 g
a/2

−a/2

(g2
1t + g2

2t ) dx dy dt (20)

and

DWa =g
2p/v

0

h2 $ g
b/2

−b/2

(C11 opx +C12 opy ){ut (a/2)−ut (−a/2)} dy

+g
a/2

−a/2

(C12 opx +C22 opy ){vt (b/2)−vt (−b/2)} dx] dt, (21)

where 2p/v is the period of an excitation.
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Use of equations (1) and (15) through (18), reduces equations (20) and (21) to

DWpa = pG'hg /h1 $bo2
0x (opx /o0x −1)2B2

x g
a/2

−a/2

× [= sinh (x/B*x )/ cosh (a/2B*x ) =]2 dx

+ ao2
0y (opy /o0y −1)2B2

y g
b/2

−b/2

[= sinh (y/B*y )/ cosh (b/2B*y ) =]2 dy% (22)

and

DWa =4pb2h2 vKx B2
x (C11 + (d32 /d31)C12) =[(opx /o0x −1) tanh (A)+A

+(a/b) (o0y /o0x ) (Ky /Kx ) (B*y /B*x ){(opy o0x −1) tanh (B)+B}] =opx o0x , (23)

where, Bx and By are the magnitudes of the complex characteristic length, B*x , and breadth,
B*y , respectively.

5.2.  : ,   

Now, following Plunkett and Lee [18] the nominal energy, Wn , for the PCLD treatments
may be defined as

Wn = 1
2 abh2 o2

0x C11 [1+2(C12 /C11) (o0y /o0x )+ (C22 /C11) (o2
0y/o2

0x )] (24)

to denote the maximum strain energy of the constraining layer if the whole layer is
subjected to uniform longitudinal strains, o0x and o0y , only in x and y directions,
respectively. Then, equations (22) and (23) can be normalized with respect to the nominal
energy given by equation (24) to give the dimensionless loss coefficients, hpa and ha , that
quantify the energies dissipated by the passive and active components of the ACLD
treatment as

hpa =
4p

1+2(C12 /C11) (o0y /o0x )+ (C22 /C11) (o2
0y /o2

0x ) $0opx

o0x
−11

2

×
D sinh (Cwx )−C sin (Dwx )
wx { cosh (Cwx )+ cos (Dwx )}

+
C22

C11

o2
0y

o2
0x 0opy

o0y
−11

2 D sinh (Cwy )−C sin (Dwy )
wy { cosh (Cwy )+ cos (Dwy )}% (25)

and

ha =
8p(1+ (d32 /d31) (C12 /C11))

1+2(C12 /C11) (o0y /o0x )+ (C22 /C11) (o2
0y /o2

0x )

× b Kx vB*x b[ tanh (A)−A+(a/b) (o0y /o0x ) (K*y /K*x ) (By /Bx ){ tanh (B)−B}]
wx [1+2Kx vB*x b{ tanh (A)+ (a/b) (Ky /Kx ) (B*y /B*x ) (d32 /d31) tanh (B)}] b
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× b (opx /o0x −1) tanh (A)+A+(a/b) (o0y /o0x ) (Ky /Kx ) (B*y /B*x )

×60opy

o0y
−11 tanh (B)+B7 b, (26)

where wx = a/Bx , wy = b/By , C=cos (u/2) and D=sin (u/2). Therefore, equations (25)
and (26) provide closed-form expressions of the loss coefficients, hpa and ha , as functions
of dimensionless parameters u, wx , (Kx vBx b) and a/b. These parameters define the loss
factor of the viscoelastic layer (u=tan−1 hg ), a dimensionless length of the constraining
layer, dimensionless control gain and aspect ratio of the plate, respectively. The sum of
these two equations give the total loss coefficient ht of the ACLD treatment due to the
combined passive and active components as

ht = hpa + ha . (27)

Note that in the case of PCLD, the expressions for hpa (equation 25) reduces to that of
Plunkett and Lee [18] if opx = opy =0, Kx =Ky =0 and o0y =0.

It is important here to note that the loss coefficients hpa and ha are not loss factors because
the normalization of the energy dissipated is done with respect to a nominal structural
energy rather than the actual structural energy.

In section 6, equations (25)–(27) are utilized to select the optimal dimensionless length
(wx = a/Bx ) and control gain (Kx vBx b) of ACLD treatments for different loss factors (hg )
and aspect ratio (a/b) in order to maximize the total loss coefficient, ht .

6. OPTIMIZATION OF ENERGY DISSIPATION OF THE ACID TREATMENT

6.1. 

Extensive efforts have been exerted to optimally design passive and active constrained
layer damping treatments of vibrating structures. For the PCLD treatments, these efforts
aim primarily at maximizing the modal damping ratios, modal strain energies or energy
dissipation coefficients and/or minimizing the weight by selecting the optimal length [18,
19, 27, 28] optimal location [29] and/or optimal material and geometrical parameters of
the treatments [30–32]. Recently, attempts have been made to optimize the performance
of the ACLD treatments by selecting the optimal thickness and shear modulus of the
viscoelastic cores as well as the control gains for fully-treated beams when proportional
and derivative controllers are used [8, 17]. Also, Baz [5] determined the optimal length and
control gains for ACLD treatments of beam-type structures by maximizing the sum of the
passive and active loss coefficients.

In this study, the optimal length and control gain of the ACLD treatments are selected
for different aspect ratios (a/b) and loss factors (hg ) in order to maximize the total loss
coefficient ht .

6.2.    -    

The optimization problem of the energy dissipation characteristics of the ACLD is first
formulated to optimize the energy dissipation characteristics of the open-loop ACLD
treatment, i.e., the PCLD treatment. Such a problem for the PCLD treatment may be
described mathematically as
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Figure 4. Optimal solutions for open loop ACLD treatment. (a) Variation of passive loss coefficient (hpa ) with
dimensionless length (a/Bx ) for various aspect ratios (a/b) and hg =1; , a/b=1;---, 2; —, 3; . . . , 10. (b)
Variation of optimal length (a/Bx ) with aspect ratio (a/b) for hg =1. (c) Variation of maximum passive loss
coefficient (hpa ) with aspect ratio (a/b) for hg =1.

Find the length wx

to maximize the total loss coefficient ht

such that the loss factor hg is known, (28)

aspect ratio a/b is known

and gain Kx vBx b=0

In this manner, the treatment is designed initially to provide the maximum energy
dissipation when it is in its open-loop mode. This guarantees the robustness of operation
of the ACLD treatment in the case of failure of the controller when it is in its closed-loop
mode. Numerical solutions are sought considering the material of the piezo-constraining
layer as elastically isotropic so that C11 =C22 when o0x = o0y , and Poisson’s ratio (C12 /C11)
is 0·33.

Figure 4(a) shows the optimal solutions for open-loop ACLD treatments for various
aspect ratios (a/b) with hg =1. It can be observed from this figure that the aspect ratio
plays a significant role on the optimal solutions. For example, the optimum length of the
constraining layer increases as the aspect ratio increases from 1 to 3 and then decreases
with further increase in the aspect ratio as shown in Figures 4(a) and 4(b). However, the
maximum loss coefficient decreases monotonically with the aspect ratio as indicated in
Figure 4(c). The optimal length of the PCLD treatment remains nearly independent of the
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Figure 5. Effect of length (a/Bx ) on passive loss coefficient (hpa ) for different visco-elastic material loss factors;
—, hg =1·0; ---, 0·5; —, 0·1.

loss factor hg of the viscoelastic layer [18, 19] as shown in Figure 5 for a/b=1. The results,
displayed in Figures 4 and 5, suggest that square passive treatments (with a/b=1) produce
the maximum loss coefficient irrespective of the viscoelastic loss factor hg .

6.3.    -    

The optimum design problem of the closed-loop ACLD treatment aims at selecting the
optimal control gain (Kx vBx b) to maximize the energy dissipation characteristics of the
ACLD using the optimal length for PCLD treatment. It is formulated as

Find gain (Kx vBx b)

to maximize the total loss coefficient ht

(29)
such that the loss factor hg is known

and a/Bx =optimal length of PCLD

Figures 6 and 7 show the optimal solutions for closed-loop ACLD treatments for
piezo-strain ratios (d32 /d31)=1 and 0·130 to simulate piezo-ceramics and piezo-polymers,

Figure 6. Effect of control gain (KxvBxb) on dimensionless loss coefficient (ht ) for closed loop ACLD treatment
for different loss factors (hg ) with d32/d31 =1: —, hg =1; ---, 0·1.
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Figure 7. Effect of control gain (KxvBxb) on dimensionless loss coefficient (ht ) for closed loop ACLD treatment
for different loss factors (hg ) with d32/d31 =0·130: —, hg =1·0; ---, 0·1.

respectively. The results displayed in these two figures are for a/b=1, E2y /E2x =1 and
o0y /o0x =1. It is clear from these figures that active control enhances considerably the
energy dissipation characteristics. This is attributable to the piezoelectrically-induced
strains (opx and opy ) in the constraining layer and is corroborated by equations (19), (25–27).
Furthermore, there is an optimal gain, for each viscoelastic material, at which the loss
coefficient becomes maximum. Such optimal gain increases as the viscoelastic loss factor,
hg increases.

Figure 8 shows the improvement in the shear strain distribution inside the viscoelastic
core due to the use of the optimally controlled ACLD when hg =0·1. It is evident that
the shear strain increases over the entire length of the treatment which in turn results in
increasing the passive energy dissipation per cycle according to equation (20).

Figure 9 shows the total loss coefficient ht at which the energy dissipation by the ACLD
treatment attains its maximum as a function of the loss factor hg of the viscoelastic core
for a/b=1. Displayed in this figure are also the loss coefficients of PCLD treatments for
the sake of comparison. It is clear that the ACLD treatment causes remarkable
improvement of the energy dissipation characteristics as compared to that of the PCLD
particularly when the loss factor hg of the viscoelastic core is small. For example, the ratio

Figure 8. Comparison between the shear strain distributions of the ACLD (—) and PCLD (---) treatments
for hg =0·1, d32/d31 =1 and KxvBxb=0·35.
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Figure 9. Comparison between the effect of visco-elastic material loss factors (hg ) on the maximum loss
coefficients (ht ) of ACLD (—) and PCLD (---) treatments for a/b=1 and d32/d31 =1.

Figure 10. Effect of the ratio of piezo-electric constants (d32/d31) on the maximum loss coefficient (ht ) for
different loss factors (hg ) with a/b=1: —, hg =1·0; ---, 0·1.

between the maximum value of ht of the ACLD treatment to that of the PCLD is about
7·8 when hg =0·1 and becomes 2·8 when hg =1. Note that small hg means u which, in turn,
implies that the viscoelastic core is stiff and as manifested by the storage modulus
G'=G cos u with G remaining constant for a given Bx . Hence, ACLD with stiffer
viscoelastic cores are more effective than treatments with softer cores provided that the
thickness and length of the core are maintained constant.

Figure 10 demonstrates the effect of the ratio of the piezoelectric constants, d32 /d31, on
the performance of the ACLD treatment for different loss factors when a/b=1. It is
evident that the active damping of the piezo-constraining layer increases as the anisotropy
of the piezoelectrical properties of the constraining layer decreases. Hence, constraining
layers made of piezo-ceramics (d32 /d31) significantly improve the damping characteristics
of the ACLD treatment as compared to layers made of piezo-polymers (d32 /d31 =0·130).

7. CONCLUSIONS

This paper has extended the pioneering and ingenious work of Plunkett and Lee [18]
for finding the optimal length of PCLD treatments, to optimize the performance of ACLD
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treatments of plate. In the present study, the optimal size and control gains are determined
to maximize the energy dissipation of the ACLD treatments. Such optimization is based
on developing a variational formulation of the dynamics of the ACLD treatments and
devising a globally stable boundary control strategy which is compatible with the operating
nature of the ACLD treatment. Closed-form expressions of the passive, active and total
loss coefficients have been developed and used in the formulation of the optimal design
problems of the ACLD treatment. Solutions of the optimization problem of the open-loop
ACLD treatment provided the optimal size of the treatment and solutions of the optimal
closed-loop ACLD problem yielded the optimal control gains. Such solutions for optimal
size of the ACLD treatment guarantees the robustness of its operation in case of failure
of the controller when it is in its closed-loop mode. The effect of the aspect ratio (a/b)
and the loss factor of the viscoelastic core on the optimal solutions have been studied. It
is found that the ACLD treatment performs better at the cost of robustness of the
controller when the constraining actuating layer becomes rectangular in shape. The effect
of the loss factor on the optimal solutions establishes that ACLD treatment is more
effective in dissipation of energy with a stiff viscoelastic core than with a softer core. Also,
it is found that the performance of the ACLD treatment increases as the anisotropy of
the piezoelectrical properties of the constraining layer decreases. It is important to note
here that, as with Plunkett and Lee [18], the present study is based on the basic assumption
that o0x and o0y are constant. Extension of the present paper can be easily performed to
include other strain distributions such as the linearly varying strain assumption of Demoret
and Torvik [19].
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